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Abstract

Animal and epidemiological studies suggest that green tea catechins may reduce the risk of cardiovascular diseases [e.g., coronary heart

disease (CHD)]. The health benefit of green tea has been attributed to its antioxidant and anti-inflammatory properties; however, considerable

evidence suggests that green tea and its catechins may reduce the risk of CHD by lowering the plasma levels of cholesterol and triglyceride.

Although the mechanism underlying such effect of green tea is yet to be determined, it is evident from in vitro and in vivo studies that

green tea or catechins inhibit the intestinal absorption of dietary lipids. Studies in vitro indicate that green tea catechins, particularly

(�)-epigallocatechin gallate, interfere with the emulsification, digestion, and micellar solubilization of lipids, critical steps involved in the

intestinal absorption of dietary fat, cholesterol, and other lipids. Based on the observations, it is likely that green tea or its catechins lower the

absorption and tissue accumulation of other lipophilic organic compounds. The available information strongly suggests that green tea or its

catechins may be used as safe and effective lipid-lowering therapeutic agents.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Green tea is a popular beverage, derived from the

tea plant Camellia sinensis. Its peculiar green color results

from the inactivation of polyphenol oxidase by treating

fresh tea leaves with hot steam and air [1]. The major poly-

phenols in green tea are catechins, which constitute about

one third of its total dry weight. The major catechins present

in green tea (Fig. 1) are (�)-epigallocatechin gallate

(EGCG), (�)-epicatechin gallate (ECG), (�)-epigallocate-
chin (EGC), and (�)-epicatechin (EC).

Evidence from animal studies indicates that green tea

and its catechins retard the development or progression

of atherosclerosis in apoE-deficient mice [2,3] and hyper-

cholesterolemic hamsters [4,5]. Epidemiological studies

have shown an inverse association between coronary

heart disease (CHD) risk and green tea consumption in

humans [6–11].
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Studies have shown that catechins possess antioxidant

activities and effectively inhibit low-density lipoprotein

(LDL) oxidation and lipid peroxidation in vitro [12–17].

At present, it remains debatable whether the reduction in

CHD risk in humans associated with green tea consumption

is attributable to the prevention of LDL oxidation or to the

antioxidant potential of green tea or its catechins [18,19];

however, evidence from animal studies clearly indicates that

green tea or its catechins lower the blood levels of

cholesterol in cholesterol-fed rats [4,20], mice [21], and

hamsters [22], as well as the plasma levels of triglyceride in

hamsters fed a high-fat diet [22] and in rats fed a high-

fructose diet [23].

Green tea catechins, particularly the principal green tea

catechin, EGCG, are not readily absorbed, with small

percentages of orally ingested catechins appearing in the

blood in rats [24] and humans [25,26]. Due to rather poor

absorption and greater availability of green tea catechins in

the intestinal lumen, it is likely that the lipid-lowering effect

of green tea and catechins is mediated largely via their

influence on the intestinal processes involved in digestion

and absorption of lipids [27–29]. Available information
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Fig. 1. Structures of major green tea catechins.
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suggests that green tea and its catechins interfere with or

inhibit the luminal emulsification, hydrolysis, and micellar

solubilization of lipids. The possibility that green tea or

catechins may influence the uptake and intracellular

processing of lipids and assembly and secretion of

chylomicrons also exists.
2. Inhibition of intestinal lipid absorption by green tea

and catechins

Using ovariectomized rats with mesenteric lymph-duct

cannula, Lfest et al. [27] showed that fresh green tea extract,
intraduodenally infused at the doses equivalent to one to two

cups of tea, significantly lowered the lymphatic absorption of

cholesterol in a dose-dependent manner in rats with

mesenteric lymph-duct cannula. Similarly, green tea extracts

profoundly inhibited the absorption of a-tocopherol, another

lipid of extreme hydrophobicity; however, the absorption of

fat (fatty acids) was altered in a biphasic fashion, with a

significant increase at a low dose of the green tea extract

and a moderate decrease at a higher dose. Ikeda et al. [28]

demonstrated that mixtures of catechins extracted from

Japanese green tea lowered the absorption of cholesterol

and triglyceride in rats with thoracic lymph-duct cannula. The

investigators observed that a mixture of EGCG and ECG was

more effective than a mixture of EC and EGC in lowering the

absorption of cholesterol, suggesting that the gallate esters of

green tea catechins were more potent inhibitors of cholesterol

absorption. In another study, Ikeda et al. [29] observed that

heat-treated catechins high in gallocatechin gallate and

catechin gallate were more effective in inhibiting cholesterol

absorption than a catechinmixture high in EGCG and ECG. It

appears that tea catechins are less effective in inhibiting fat

absorption. Using the fecal isotope ratio method, Raederstorff

et al. [30] found that EGCG lowered the absorption of

cholesterol in a dose-dependent manner in rats, whereas it

decreased fat absorption only moderately even at a high dose.
This finding is consistent with the observation of Ikeda et al.

[28] that the inhibition of fat absorption by catechins was both

moderate and dependent on the types of fat incorporated into

lipid emulsions.
3. Inhibition of luminal lipid hydrolysis by green tea

and catechins

Studies in vitro have shown that green tea and catechins

inhibit pancreatic lipase activity. Juhel et al. [31] first

reported that a green tea extract significantly inhibited

gastric and pancreatic lipase activities, as determined by

using a relatively high level of catechins under gastric and

duodenal conditions in vitro. The addition of the green tea

extract at 60 mg/g triolein prevented the emulsification of

fat in the presence of bile acids. Similarly, Ikeda et al. [32]

demonstrated that a mixture of catechins high in EGCG and

ECG dose-dependently inhibited pancreatic lipase in vitro

and suppressed the postprandial rise in serum triglyceride.

A recent study by Shishikura et al. [33] examined the

effect of green tea catechins on lipid emulsification using a

model emulsion consisting of olive oil, phosphatidylcho-

line (PC), and bile salt. Green tea catechins, particularly

EGCG, at the levels achievable by typical daily intake,

markedly altered the physicochemical properties of a lipid

emulsion by increasing its particle size and reducing the

surface area [33]. Such changes likely slow the rate of

hydrolysis of fat, as pancreatic lipase activity decreases

with increasing emulsion droplet size and decreasing

surface area [34]. Of particular interest is the finding that

among the green tea catechins, EGCG was the main

compound present on the lipid phase of the emulsion,

indicating that EGCG is the principal catechin responsible

for the changes in emulsion properties. This finding is

consistent with the observation that EGCG is more

effective than other catechins in lowering intestinal lipid

absorption [28,35]. The investigators [33] proposed that

the hydroxyl moieties of EGCG interact with the hydro-

philic head group of PC at the exterior of a lipid emulsion

by forming hydrogen bonds. Such interactions may lead to

formation of cross-links followed by coalescence of the

emulsion droplets.

Consistent with the above findings, our recent study [35]

showed that green tea catechins also inhibit pancreatic

phospholipase A2 (PLA2), as determined under in vitro

conditions. Among the major catechins, EGCG was most

effective in inhibiting PLA2 activity. The degree of PLA2

inhibition by catechins, at 0.6 Amol, increased in the order

of EC, EGC, ECG, and EGCG. When labeled PC was

infused intraduodenally along with EGCG in rats with

mesenteric lymph cannula, a significant amount of PC

remained unhydrolyzed in the small intestinal lumen and the

cecum, with a marked decrease in the lymphatic output of

the labeled tracer. Our findings from this study provide

strong evidence that the decreased absorption of lipids by
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green tea catechins, particularly EGCG, is partly attributable

to the inhibition of PLA2 activity. As proposed by

Shishikura et al. [33], it is possible that EGCG may form

complexes with the surface PC of a lipid emulsion,

hindering access to the substrate by PLA2 or directly with

the enzyme protein altering its conformation and catalytic

activity [1,36,37].

The potent inhibitory effect of EGCG on pancreatic

PLA2 activity may be largely responsible for the decreased

absorption of lipids because luminal PC hydrolysis is

critical to facilitating intestinal lipid digestion and absorp-

tion as evidenced from studies in vitro [38–42] and in vivo

[43]. Many studies in vitro demonstrated that if PC that is

present on the exterior of a lipid emulsion remains intact, it

interferes with the hydrolysis of the core triglyceride by

pancreatic lipase. Pancreatic lipase/colipase was shown to

be ineffective in hydrolyzing triglyceride incorporated into

PC-containing lipid emulsions, and the initial hydrolysis of

the surface PC by pancreatic PLA2 significantly increased

the hydrolysis of triglyceride by pancreatic lipase/colipase

[38,41,42,44]. In addition, a study with intestinal cells [44]

showed that a minimal hydrolysis of triglyceride was

required for stimulation of the cell uptake of other extremely

hydrophobic lipids such as cholesterol. Thus, the initial

action of pancreatic PLA2 is critical to the hydrolysis of

triglyceride by lipase, formation of mixed micelles, and

subsequent transfer of micellar lipids to the enterocyte

through the unstirred water layer [45,46].

In our study [35], a-tocopherol was included in a lipid

emulsion as another marker of extremely hydrophobic lipids

and retinol was included as a relatively less hydrophobic

lipid to determine whether EGCG differentially inhibits the

absorption of lipids differing in hydrophobicity in rats. Data

showed that EGCG lowered the lymphatic output of a-

tocopherol to 46% of the controls, whereas it did not affect

the lymphatic absorption of retinol and lowered fat (fatty

acid) absorption only moderately (by less than 9%). These

findings are in keeping with those of Homan and Hamelehle

[47] in that the presence of PC in bile salt micelles markedly

reduced the uptake of cholesterol, whereas it did not

interfere with the cell uptake of less hydrophobic lipids

such as retinol, oleic acid, and monoacylglycerol. Thus, the

inhibition of luminal PC hydrolysis by EGCG may explain

the rather marked inhibition of the lymphatic absorption of

cholesterol and a-tocopherol of extreme hydrophobicity and

the moderate or no effect of EGCG on less hydrophobic

compounds such as retinol and fatty acid [35].

In view of the above findings, it would be of interest to

determine whether EGCG interferes with the absorption of

nonnutrient lipophilic compounds, including persistent

organic pollutants (POPs). Previously, it has been shown

that green tea profoundly lowered the absorption of POPs,

including polychlorinated biphenyls, thus decreasing the

tissue burden of the POPs [48]. Attention should be

directed to determining whether green tea or catechins

can be used as an effective dietary means of reducing the
absorption and tissue accumulation of certain environmen-

tal lipophilic POPs.
4. Influence of green tea and catechins on the intestinal

uptake and intracellular processing of lipids

A critical step for the uptake and absorption of lipids by

the enterocyte is the micellar solubilization of hydrolyzed

lipids, which facilitates the transfer of lipids via the unstirred

water layer to the enterocyte for uptake. Studies have shown

that EGCG is more effective than other green tea catechins

in precipitating cholesterol from bile salt micelles [28,29]

but that it does not significantly affect the micellar solubility

of fatty acids and monoacylglycerol, which are products of

triglyceride hydrolysis by pancreatic lipase. The observa-

tions are in keeping with the findings that EGCG is a potent

inhibitor of cholesterol absorption but has little or moderate

inhibitory effect on fatty acid (fat) absorption [28,30].

Increasing evidence suggests that uptake of lipids by the

enterocyte is partly mediated by specific transporters on the

brush border membrane (BBM). The possibility that green tea

catechins may interact with proteins implicated in the uptake

and efflux of lipids exists. For example, the transport of

cholesterol across the BBM is modulated by proteins such as

multidrug resistance P-glycoprotein 1 [49], ATP-binding

cassette proteins [50,51], B type-1 scavenger receptors

[52,53], and Niemann Pick C1-like 1 protein [54]. As stated

above, ingested catechins may form complexes with BBM

proteins through hydrophobic interactions and hydrogen

bonding. This possibility is supported by the findings that

certain flavonoids modulate the activities of MDR glyco-

proteins by interacting with the ATP-binding site and steroid-

interacting region [55,56]. Thus, it is probable that green tea

catechins may influence the uptake of cholesterol and other

lipids by the enterocyte through interaction with transporters,

particularly those exposed to the intestinal lumen. At present,

it remains unknown whether green tea or its constituents

influence their expression in the enterocyte.

After lipids are taken up by the enterocyte, green tea may

alter the intracellular processing and packaging of lipids,

including their reacylation or resynthesis of lipids. In our

previous study [27], we observed a transient but significant

decrease in the relative amount of esterified cholesterol

appearing in lymph when a lipid emulsion was luminally

infused with green tea extract, suggesting that green tea may

inhibit intestinal acyl CoA:cholesterol acyltransferase in the

enterocyte. Evidence indicates that flavonoids such as

quercetin and naringenin inhibit the activity of diacylgly-

cerol acyltransferase and the lipidation of apoB-containing

lipoproteins by microsomal triglyceride transfer protein in

Caco-2 cells [57] and HepG2 cells [58]. Thus, it is possible

that green tea catechins may influence critical steps involved

in the assembly and secretion of chylomicrons from the

enterocyte into the lymphatics. Further studies are warranted

to determine whether green tea or its constituents alter the

expression of genes involved in regulating these processes.
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5. Summary and conclusion

Based on the information available thus far, it is evident

that green tea and its catechins effectively lower the

intestinal absorption of lipids. Among the green tea

catechins, EGCG is the most potent inhibitor of lipid

absorption. The potent inhibitory effect of EGCG appears to

be associated with its ability to form complexes with lipids

and lipolytic enzymes, thereby interfering with the luminal

processes of emulsification, hydrolysis, micellar solubiliza-

tion, and subsequent uptake of lipids. EGCG appears to be

more effective in lowering the absorption of lipids of

extreme hydrophobicity, such as cholesterol and a-tocoph-

erol, with little or a moderate effect on less hydrophobic

lipids such as retinol and fatty acid. It is probable that green

tea or it constituents lower the absorption of other lipophilic

compounds such as POPs. Further studies are warranted to

define the mechanisms underlying the inhibition of lipid

absorption by green tea and its catechins.
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